Skip to main content
Version: 0.4

superduper_ibis

Superduper ibis is a plugin for ibis-framework that allows you to use Superduper as a backend for your ibis queries.

This plugin cannot be used independently; it must be used together with superduper_ibis.

Superduper supports SQL databases via the ibis project. With superduper, queries may be built which conform to the ibis API, with additional support for complex data-types and vector-searches.

Installation​

pip install superduper_ibis

API​

ClassDescription
superduper_ibis.data_backend.IbisDataBackendIbis data backend for the database.
superduper_ibis.query.IbisQueryA query that can be executed on an Ibis database.
superduper_ibis.db_helper.DBHelperGeneric helper class for database.
superduper_ibis.db_helper.ClickHouseHelperHelper class for ClickHouse database.
superduper_ibis.field_types.FieldTypeField type to represent the type of a field in a table.

Connection examples​

MySQL​

from superduper import superduper

db = superduper('mysql://<mysql-uri>')

Postgres​

from superduper import superduper

db = superduper('postgres://<postgres-uri>')

Other databases​


from superduper import superduper

db = superduper('<database-uri>')

Query examples​

Inserting data​

Table data must correspond to the Schema for that table. Either create a Schema and Table or use an auto-detected Schema. Once you've got a Schema, all data inserted must conform to that Schema:

import pandas

pandas.DataFrame([
PIL.Image.open('image.jpg'), 'some text', 4,
PIL.Image.open('other_image.jpg'), 'some other text', 3,
])

t.insert(dataframe.to_dict(orient='records'))

Selecting data​

superduper supports selecting data via the ibis query API. For example:

db['my_table'].filter(t.rating > 3).limit(5).select(t.image).execute()

Vector-searches are supported via the like operator:

(
db['my_table']
.like({'text': 'something like this'}, vector_index='my-index')
.filter(t.rating > 3)
.limit(5)
.select(t.image, t.id)
).execute()

Vector-searches are either first or last in a chain of operations:

(
db['my_table']
t.filter(t.rating > 3)
.limit(5)
.select(t.image, t.id)
.like({'text': 'something like this'}, vector_index='my-index')
).execute()

Updating data​

Updates are not covered for superduper SQL integrations.

Deleting data​

db.databackend.drop_table('my-table')