Skip to main content
Version: 0.4

superduper_torch

Superduper allows users to work with arbitrary torch models, with custom pre-, post-processing and input/ output data-types, as well as offering training with superduper

Installation​

pip install superduper_torch

API​

ClassDescription
superduper_torch.model.TorchModelTorch model. This class is a wrapper around a PyTorch model.
superduper_torch.training.TorchTrainerConfiguration for the PyTorch trainer.

Examples​

TorchModel​

import torch
from superduper_torch.model import TorchModel

model = TorchModel(
object=torch.nn.Linear(32, 1),
identifier="test",
preferred_devices=("cpu",),
postprocess=lambda x: int(torch.sigmoid(x).item() > 0.5),
)
model.predict(torch.randn(32))

Training Example​

Read more about this here