Skip to main content

Creating custom templates

Read about the Template component here.

Existing templates​

There are several inbult templates included in superduper which you can view with

superduper ls

To create your own template on the basis of the existing templates, run:

superduper bootstrap <template_name> --destination <output_dir>

Each inbuilt template directory includes a build.ipynb notebook. This notebook may be used to prototype your template, and work interactively. Once you are ready, you may export the template with the command:

my_template.export('.')

Best practices​

Use a notebook​

We have built all of our templates using Jupyter notebooks as the "build tool". The reason this is useful, is because developers can apply each of their components as they go, and interactively debug their workflow using sample data.

When finished, the sample data and chosen parameters can then be directly shipped as defaults in the Template or substituted with variables. In this way, the developer only needs to make sure that the notebook works, and Superduper will take care of everything else.

Navigate to GitHub to check out the example templates.

Ship sample data with the template​

In order to ship sample data with your template, you may provide data in the default_table argument. For example in the simple_rag template we see this command.

from superduper import Template, Table, Schema
from superduper.components.dataset import RemoteData

template = Template(
'simple_rag',
template=app,
substitutions={COLLECTION_NAME: 'table_name', OUTPUT_PREFIX: 'output_prefix', 'mongodb': 'databackend'},
template_variables=['table_name', 'id_field', 'output_prefix', 'databackend'],
default_table=Table(
'sample_simple_rag',
schema=Schema('sample_simple_rag/schema', fields={'x': 'str'}),
data=RemoteData(
'superduper-docs',
getter=getter,
)
),
types={
'id_field': {
'type': 'str',
'default': '_id',
},
'llm_model': {
'type': 'str',
'choices': ['openai', 'anthropic', 'vllm', 'llamacpp'],
'default': 'openai',
},
'embedding_model': {
'type': 'str',
'choices': ['openai', 'sentence_transformers'],
'default': 'openai',
},
'table_name': {
'type': 'str',
'default': SAMPLE_COLLECTION_NAME,
},
'databackend': {
'type': 'str',
'default': 'mongodb',
}
}
)

By wrapping the data inside a getter function, use the RemoteData component.

Make sure that the template builds, without needing to apply the components​

The inbult template notebooks include the parameter APPLY = True/ False. The notebook then toggles whether to actually apply all components with db.apply(component). When iterating, it is useful to toggle this behaviour to off, so that the template may be exported quickly.