Skip to main content
Version: 0.4

Multimodal vector search - Video

APPLY = True
TABLE_NAME = 'docs'

Connect to superduper​

from superduper import superduper

db = superduper('mongomock://test_db')

Get useful sample data​

def getter():
import os
import subprocess
subprocess.run(['rm', 'videos.zip'])
subprocess.run(['rm', '-rf', 'videos'])
subprocess.run(['curl', '-O', 'https://superduperdb-public-demo.s3.amazonaws.com/videos.zip'])
subprocess.run(['unzip', 'videos.zip'])
subprocess.run(['rm', 'videos.zip'])
data = [{'x': f'videos/{x}'} for x in os.listdir('./videos')]
return data[:2]
if APPLY:
data = getter()

Create datatype​

SuperduperDB supports automatic data conversion, so users don’t need to worry about the compatibility of different data formats (PIL.Image, numpy.array, pandas.DataFrame, etc.) with the database.

It also supports custom data conversion methods for transforming data, such as defining the following Datatype.

Setup tables or collections​

from superduper.components.table import Table
from superduper import Schema
from superduper.components.datatype import file_lazy

schema = Schema(identifier="schema", fields={"x": file_lazy})
table = Table(TABLE_NAME, schema=schema)

if APPLY:
db.apply(table, force=True)
if APPLY:
db[TABLE_NAME].insert(datas).execute()
note

Note that applying a chunker is not mandatory for search. If your data is already chunked (e.g. short text snippets or audio) or if you are searching through something like images, which can't be chunked, then this won't be necessary.

import cv2
import tqdm
from PIL import Image
from superduper.ext.pillow import pil_image
from superduper import model, Schema


@model
def chunker(video_file):
# Set the sampling frequency for frames
sample_freq = 100

# Open the video file using OpenCV
cap = cv2.VideoCapture(video_file)

# Initialize variables
frame_count = 0
fps = cap.get(cv2.CAP_PROP_FPS)
extracted_frames = []
progress = tqdm.tqdm()

# Iterate through video frames
while True:
ret, frame = cap.read()
if not ret:
break

# Get the current timestamp based on frame count and FPS
current_timestamp = frame_count // fps

# Sample frames based on the specified frequency
if frame_count % sample_freq == 0:
extracted_frames.append({
'image': Image.fromarray(frame[:,:,::-1]), # Convert BGR to RGB
'current_timestamp': current_timestamp,
})
frame_count += 1
progress.update(1)

# Release resources
cap.release()
cv2.destroyAllWindows()

# Return the list of extracted frames
return extracted_frames

Now we apply this chunker to the data by wrapping the chunker in Listener:

from superduper import Listener

upstream_listener = Listener(
model=chunker,
select=db['docs'].select(),
key='x',
identifier='chunker',
flatten=True,
upstream=[table],
predict_kwargs={'max_chunk_size': 1},
)
if APPLY:
db.apply(upstream_listener, force=True)

Build multimodal embedding models​

We define the output data type of a model as a vector for vector transformation.

from superduper.components.vector_index import sqlvector
output_datatype = sqlvector(shape=(1024,))

Then define two models, one for text embedding and one for image embedding.

import clip
from superduper import vector, imported
from superduper_torch import TorchModel

vit = imported(clip.load)("ViT-B/32", device='cpu')

compatible_model = TorchModel(
identifier='clip_text',
object=vit[0],
preprocess=lambda x: clip.tokenize(x)[0],
postprocess=lambda x: x.tolist(),
datatype=output_datatype,
forward_method='encode_text',
)

model = TorchModel(
identifier='clip_image',
object=vit[0].visual,
preprocess=vit[1],
postprocess=lambda x: x.tolist(),
datatype=output_datatype,
)

Because we use multimodal models, we define different keys to specify which model to use for embedding calculations in the vector_index.

Create vector-index​

from superduper import VectorIndex, Listener

vector_index = VectorIndex(
'my-vector-index',
indexing_listener=Listener(
key=upstream_listener.outputs + '.image',
select=db[upstream_listener.outputs].select(),
model=model,
identifier=f'{model.identifier}-listener'
),
compatible_listener=Listener(
key='text',
model=compatible_model,
select=None,
identifier='compatible-listener',
),
upstream=[upstream_listener],
)
if APPLY:
db.apply(vector_index)
from superduper import Application

app = Application(
'video-search',
components=[
upstream_listener,
vector_index,
]
)
if APPLY:
db.apply(app)

We can perform the vector searches using text description:

from superduper import Document
item = Document({'text': "A single red and a blue player battle for the ball"})
from superduper import Document
item = Document({'text': "Some monkeys playing"})

Once we have this search target, we can execute a search as follows.

Visualize Results​

if APPLY:
from IPython.display import display
select = db[upstream_listener.outputs].like(item, vector_index='my-vector-index', n=5).select()

for result in select.execute():
display(Document(result.unpack())[upstream_listener.outputs + '.image'])
from superduper import Template, Table, Schema
from superduper.components.dataset import RemoteData

t = Template(
'multimodal_video_search',
template=app,
substitutions={'docs': 'table_name'},
default_table=Table(
'sample_multimodal_video_search',
schema=Schema(
'sample_multimodal_video_search/schema',
fields={'x': file_lazy},
),
data=RemoteData(
'sample_videos',
getter=getter,
)
),
types={
'table_name': {
'type': 'str',
'default': 'sample_multimodal_video_search',
}
}
)
t.export('.')