Skip to main content
Version: Main branch

Text vector search

APPLY = False
COLLECTION_NAME = '<var:table_name>' if not APPLY else 'sample_text_vector_search'
from superduper import superduper

db = superduper('mongomock:///test_db')

Get useful sample data​

import json
import requests
import io

def getter():
response = requests.get('https://superduperdb-public-demo.s3.amazonaws.com/text.json')
return json.loads(response.content.decode('utf-8'))
if APPLY:
data = getter()

Insert simple data​

After turning on auto_schema, we can directly insert data, and superduper will automatically analyze the data type, and match the construction of the table and datatype.

if APPLY:
from superduper import Document
ids = db.execute(db[COLLECTION_NAME].insert([Document(r) for r in data]))
note

Note that applying a chunker is not mandatory for search. If your data is already chunked (e.g. short text snippets or audio) or if you are searching through something like images, which can't be chunked, then this won't be necessary.

from superduper import Model

class Chunker(Model):
chunk_size: int = 200
signature: str = 'singleton'

def predict(self, text):
text = text.split()
chunks = [' '.join(text[i:i + self.chunk_size]) for i in range(0, len(text), self.chunk_size)]
return chunks

Now we apply this chunker to the data by wrapping the chunker in Listener:

from superduper import Listener

upstream_listener = Listener(
model=Chunker('chunk_model', chunk_size=200, example='test ' * 50),
select=db[COLLECTION_NAME].select(),
key='x',
identifier=f'chunker_{COLLECTION_NAME}',
flatten=True,
)
if APPLY:
db.apply(upstream_listener, force=True)

Select outputs of upstream listener​

note

This is useful if you have performed a first step, such as pre-computing features, or chunking your data. You can use this query to operate on those outputs.

Build text embedding model​

OpenAI:

from superduper.components.vector_index import sqlvector
from superduper_openai import OpenAIEmbedding

openai_embedding = OpenAIEmbedding(identifier='text-embedding-ada-002', datatype=sqlvector(shape=(1536,)))

Sentence-transformers

from superduper.components.vector_index import sqlvector
from superduper_sentence_transformers import SentenceTransformer

sentence_transformers_embedding = SentenceTransformer(
identifier="sentence-transformers-embedding",
model="BAAI/bge-small-en",
datatype=sqlvector(shape=(1024,)),
postprocess=lambda x: x.tolist(),
predict_kwargs={"show_progress_bar": True},
)
from superduper.components.model import ModelRouter

embedding_model = ModelRouter(
'embedding',
models={'openai': openai_embedding, 'sentence_transformers': sentence_transformers_embedding},
model='<var:embedding_model>' if not APPLY else 'openai',
example='this is a test',
)

Create vector-index​

from superduper import VectorIndex, Listener

vector_index_name = f'vector-index-{COLLECTION_NAME}'

vector_index = VectorIndex(
vector_index_name,
indexing_listener=Listener(
key=upstream_listener.outputs,
select=db[upstream_listener.outputs].select(),
model=embedding_model,
identifier=f'embedding-listener-{COLLECTION_NAME}',
upstream=[upstream_listener],
)
)
if APPLY:
db.apply(vector_index, force=True)

By applying the RAG model to the database, it will subsequently be accessible for use in other services.

from superduper import Application

app = Application(
f'text-vector-search-app-{COLLECTION_NAME}',
components=[
upstream_listener,
vector_index,
]
)
if APPLY:
db.apply(app, force=True)

You can now load the model elsewhere and make predictions using the following command.

search_term = 'tell me about the use of pylance and vector-search'

vector_search_query = db[f'_outputs__chunker_{COLLECTION_NAME}'].like(
{f'_outputs__chunker_{COLLECTION_NAME}': search_term},
n=10,
vector_index=vector_index_name,
).select()
if APPLY:
vector_search_query.tolist()
from superduper import QueryTemplate, CFG

qt = QueryTemplate(
'vector_search',
template=vector_search_query,
substitutions={
COLLECTION_NAME: 'table_name',
search_term: 'search_term',
'mongodb': 'data_backend',
},
types={
'search_term': {
'type': 'str',
'default': 'enter your question here...',
},
'table_name': {
'type': 'str',
'default': 'sample_text_vector_search'
},
'data_backend': {
'type': 'mongodb',
'choices': ['mongodb', 'ibis'],
'default': 'mongodb'
}
}
)

Create template​

from superduper import Template, CFG, Table, Schema
from superduper.components.dataset import RemoteData

template = Template(
'text_vector_search',
template=app,
default_table=Table(
'sample_text_vector_search',
schema=Schema('sample_text_vector_search/schema', fields={'x': 'str'}),
data=RemoteData(
'superduper-docs',
getter=getter,
)
),
queries=[qt],
substitutions={COLLECTION_NAME: 'table_name', 'mongodb': 'data_backend'},
template_variables=['embedding_model', 'table_name', 'data_backend'],
types={
'embedding_model': {
'type': 'str',
'choices': ['openai', 'sentence_transformers'],
'default': 'openai',
},
'table_name': {
'type': 'str',
'default': 'sample_text_vector_search'
},
'data_backend': {
'type': 'mongodb',
'choices': ['mongodb', 'ibis'],
'default': 'mongodb'
}
}
)
template.export('.')