SuperDuper Protocol
Superduper includes a protocol allowed developers to switch back and forth from Python and YAML/ JSON formats. The mapping is fairly self-explanatory after reading the examples below.
Writing in Superduper-protocol directly​
- YAML
- JSON
- Python
_base: "?my_vector_index"
_leaves:
postprocess:
_path: superduper/base/code/Code
code: '
from superduper import code
@code
def postprocess(x):
return x.tolist()
'
my_vector:
_path: superduper.components/vector_index/vector
shape: 384
sentence_transformer:
_path: superduper/ext/sentence_transformers/model/SentenceTransformer
datatype: "?my_vector"
model: "all-MiniLM-L6-v2"
postprocess: "?postprocess"
my_query:
_path: superduper/backends/mongodb/query/parse_query
query: "documents.find()"
my_listener:
_path: superduper.components/listener/Listener
model: "?sentence_transformer"
select: "?my_query"
key: "X"
my_vector_index:
_path: superduper.components/vector_index/VectorIndex
indexing_listener: "?my_listener"
measure: cosine
Then from the commmand line:
superduper apply --manifest='<path_to_config>.yaml'
{
"_base": "?my_vector_index",
"_leaves": {
"postprocess": {
"_path": "superduper/base/code/Code",
"code": "from superduper import code\n\n@code\ndef postprocess(x):\n return x.tolist()"
},
"my_vector": {
"_path": "superduper.components/vector_index/vector",
"shape": 384
},
"sentence_transformer": {
"_path": "superduper/ext/sentence_transformers/model/SentenceTransformer",
"datatype": "?my_vector",
"model": "all-MiniLM-L6-v2",
"postprocess": "?postprocess"
},
"my_query": {
"_path": "superduper/backends/mongodb/query/parse_query",
"query": "documents.find()"
},
"my_listener": {
"_path": "superduper.components/listener/Listener",
"model": "?sentence_transformer",
"select": "?my_query"
},
"my_vector_index": {
"_path": "superduper.components/vector_index/VectorIndex",
"indexing_listener": "?my_listener",
"measure": "cosine"
}
}
}
Then from the command line:
superduper apply --manifest='<path_to_config>.json'
from superduper import superduper
from superduper.components.vector_index import vector
from superduper.ext.sentence_transformers.model import SentenceTransformer
from superduper.components.listener import Listener
from superduper.components.vector_index import VectorIndex
from superduper.base.code import Code
from superduper import Stack
db = superduper('mongomock://')
datatype = vector(shape=384, identifier="my-vec")
def postprocess(x):
return x.tolist()
postprocess = Code.from_object(postprocess)
model = SentenceTransformer(
identifier="test",
datatype=datatype,
predict_kwargs={"show_progress_bar": True},
signature="*args,**kwargs",
model="all-MiniLM-L6-v2",
device="cpu",
postprocess=postprocess,
)
listener = Listener(
identifier="my-listener",
key="txt",
model=model,
select=db['documents'].find(),
active=True,
predict_kwargs={}
)
vector_index = VectorIndex(
identifier="my-index",
indexing_listener=listener,
measure="cosine"
)
db.apply(vector_index)
Converting a Component
to Superduper-protocol​
All components may be converted to Superduper-protocol using the Component.encode
method:
encoding = vector_index.encode()
This encoding may be written directly to disk with:
vector_index.export(zip=True) # outputs to "./my-index.zip"
Developers may reload components from disk with Component.read
reloaded = Component.read('./my-index.zip')